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This paper deals with the pseudospectral solution of differential
equations with coordinate singularities such as thase which describe
situations in spherical or cylindrical geometries. We use the differential
equation, together with a smoothness assumption on the solution,
to construct “pole conditions.” The pole conditions, which are
straightforward and easily implemented, serve as numerical boundary
conditions at the coordinate singularity. Standard pseudospectral
methods, including fast transformatien techniques, can then be applied
10 the singular problem. The method is ilfustrated using the eigenvalue
problem of Bessel's equation and a Poisson equation on the unit disk.
Numerical results show that spectral convergence is achieved. © 1993
Academic Prgss, Ing.

1. INTRODUCTION

Many physical situations give rise to mathematical
models involving singular differential problems with
smooth solutions. For example, solutions of differential
equations in cylindrical or spherical geometries have special
behaviour near the coordinate singularities and this forces
the solutions to be smooth, Numerical methods for
approximating solutions of problems with coordinate
singularities should be designed to capture the special
behaviour of the cxact differential solutions at the
singularities. Here we are concerned with the solution of
problems with coordinate singularities by means of
pseudospectral methods.

When spectral methods are applied to many singular
problems convergent solutions can be obtained, even when
the singularity has not been treated with special care.
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However, the accuracy or computational efficiency may be
degraded since standard spectral representations either do
not fully capture the behaviour of solutions near the
singularities, or they are ill-suited to fast transform tech-
niques [1-3, 5]. Several approaches, such as expansions in
spherical harmonics, parity-modified Fourier series and
modified Robert functions [2], or specially chosen basis
functions [4], have been presented in attempts to capture
the special behaviour of solutions near coordinate
singularities. They nearly all follow the same pattern in
seeking an approximation expanded in certain special func-
tions which satisfy some “pole conditions” derived from the
smoothness of solutions. These expansions work well in
spectral Galerkin and spectral tau methods. They are not
well-suited to pseudospectral (interpolatory) methods,
which is unfortunate, since these methods are more readily
applied to variable coeflictent and nonlinear problems.

In this paper we deal with the application of pseudospec-
tral methods to singular problems using an approach which
is related to that adopted by Gottlieb and Orszag [3,
pp. 152-1537 in their Chebyshev tau solution of Bessel’s
equation. We shall use the differentizl equation to construct
additional pole conditions which will be simple and easily
used. The cxtra pole conditions will serve as numerical
boundary conditions which will enable us to solve singular
problems by standard pseudospectral methods.

In Section 2 of the paper we consider as a one-dimen-
sional example the computation of eigenvalues of Bessel’s
equation. The example is used to illustrate how additional
pole conditions are constructed using the diflerential equa-
tion. Numerical results for the eigenproblem are also
presented in this section. Section 3 shows how pole condi-
tions are obtained for a Poisson-type equation on a circular
disk. The solution of this problem by pseudospectral
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methods is discussed in Section 4, and a finite-difference
preconditioner for the pseudospectral differentiation matrix
is also considered. Section 5 contains conclusions and
comments.

Throughout this paper, any problem considered is
assumed to have a unique and sufficiently smooth solution.

2. EIGENVALUE PROBLEM OF BESSEL'S
EQUATION

As a simple example of singular problems, let us consider
the spectral computation of the eigenvalues of Bessel’s
equation, which has been discussed by Gottlieb and Orszag
[5, pp. 152-153]. The problem is to find the eigenvalues, A,
and eigenfunctions, u(x), of

1 2
u"+—u’—n—2u=—iu, (2.1)
x X
subject to the conditions that
u(1)=0 (22)

and that u(x) be finite for 0 < x < 1. The exact eigenvalues
are related to the zeros of the Bessel function J, and are
given by 4,,=jZ,, where J,(j,,) =0, p=1,2, ...

When n is even the eigenfunctions of (2.1) are even
functions of x, and when » is odd the eigenfunctions are odd.
For odd #, this parity property enables us to approximate
u(x)on[~1,1] by

(2.3)

M
uzM_l(x)= Z Ty 1(X),
m=1

where T,,,_,(x) is a Chebyshev polynomial of degree
2m—1. Table 14.1 in [57 lists numerical results for the
smallest eigenvalue, 4, of (2.1) with n =7, obtained using
(2.2), (2.3), and the Chebyshev tan method. The con-
vergence of this method, albeit very impressive as M
increases, i$ degraded by the coordinate singutarity of (2.1)
at x=0. Gottlieb and Orszag [5] also showed that it is
possible to improve the convergence of (2.3) by imposing
additional “pole conditions,” like

u'(0)=0. (2.4)

The numerical values of the smallest eigenvalue, 2, of (2.1)
with n="7, obtained using (2.3), (2.2), (24), and the
Chebyshev tau method are also listed in Table 14.1 in [5].
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There is clearly a dramatic improvement in the rate of
convergence with (2.4) applied.

However, there are several difficulties in using (2.3) and
(2.4) in a pure “interpolatory” method—the pseudospectral
method. First, the even—odd property of u(x) associated
with the parity of » is not well-suited to the pseudospectral
method. Moreover, it is not easy to find and to treat the
parity of solutions of higher-dimensional problems. Finaily,
there is a question of whether (2.4) is cotrect for (2.1) with
all non-negative integer values of n.

To show the suitability, or otherwise, of (2.4) for
n=4>0,1,2, .., let us consider the pseudospectral approxima-
tion to (2.1} in detail. Define the transformed Chebyshev—
Lobatto points as

_ 1 —cos(kn/N)

X 5 , k=0,1,.,N, (2.5)
where N is a certain positive integer. Let
N
uM(xy= Y, uphi(x), (2.6)
k=0
where
Nox_—x,
= —, 2.7
Ry (x) }:—[G P (2.7
ik
The collocation equations are defined by
d’u 1 du® n
=z (x;} +;}E (x,) —;} M (x))
= —Au"(x)), 1<jEN-1, (2.8)
subject to the given boundary condition (2.2} at x=1,
u™(1)=0, (2.9)
and the pole condition (as a boundary condition)
d N
& 0)=0. (2.10)
dx

As functions of N, relative errors, RE, of computed values
of the two smallest eigenvalues obtained using (2.8)}-(2.10)
are plotted in Fig. 2.1 for the cases n=90, 1, 2, 7. Figure 2.1
shows that the imposition of (2.4) as a boundary condition
at the singular point x = 0 actually gives spectral accuracy
for all cases except n = 1. The computation for the case n = 1
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FIG. 2.1. Relative errors of computed smallest two eigenvalues of (2.1) as functions of &. Pole condition, either (2.4) or (2.15), is used in the
pseudospectral approximation.

suffers a deleterious effect from the singularity. The numeri- 0 (lz) — (0} =0, (2.12)

cal approximation in this case has not captured the

behaviour of the solution near x = (. This can be illustrated

in the following analysis. o (l) (1= n?) du (0)=0, (2.13)
If we assume that (2.1) admits a solution e C*[0, 1], X

{2.1) implies that 2\ d2u

o(l): (2__)E(0)= —Au(0). (2.14)

2
d’u 1 [ du d’u -
F(XH_I:d_(OHXFM)] , :

X xlax X It is worth noting that (2.12)—(2.14) are derived from the dif-
n? du 2 d%u ferential equation (2.1) itself and the assumption of smooth-
[”(0) +x o @)+ 3 a2 (¢ ):l ness of the solution. Therefore, (2.12)}-(2.14) should contain
sufficient information to handle the special behaviour
= — du(x), (2.11)  of the solution near the coordinate singularity. Indeed,
' (2.12)-{2.14) contain the pole condition (2.4) for cases n # 1
where 0 <#, { <x < L. Taking the limit as x — 0 we obtain  in which spectral accuracy can be obtained by imposing

xZ



PSEUDOSPECTRAL METHOD

{2.4} as a boundary condition. Moreover, they do not give
(24) for the case n=1 in which the pseudospectral
approximation using (2.4} has poor convergence. This
illustrates why imposition of (2.4) cannot improve the rate
of convergence for the case n= 1.

It is obvious that use of ali three conditions (2.12)-{(2.14)
creates an overdetermined system. Actually, it is not
necessary to impose all these constraints to obtain very
high accuracy. From the orders of 1/x in (2.12)-(2.14) it is
natural to choose (2.12). But (2.12) suffers also from the
“defect” at n =0. Therefore, we should add one “rank™ to
(2.12) from (2.13} when n=0. This gives

—nu(0) + 7(—n®) 2 (0) =0, (2.15)
dx
where the function y(a) is defined by
1 a=0
=< ’ 2.16
x(a) {Q 20, (2.16)

Obviously, (2.15) is simple to use in the pseudospectral
approximation. The collocation equation of (2.15) is given
by

N
—n2u0) 4 ()

. {0)=0.

(2.17)

RE of computed values of the two smallest eigenvalues
obtained using (2.8), (2.9), and (2.17) are also plotted as
functions of & in Fig. 2.1. It is shown in Fig. 2.1 that the
pseudospectral method imposing (2.15) gives spectral
accuracy for alt cases n =0, 1, 2, 7 and it has nearly the same
accuracy as that given by imposing (2.4) forcasesn=0, 2, 7.

3. POLE CONDITIONS FOR POISSON-TYPE
EQUATIONS ON THE UNIT DISK

In this section we show how to construct pole conditions
for Poisson-type equations on the unit disk following the
approach discussed in Section 2. Consider

—Au+Au={,
u(l, 0) = g(9),

O<r<l, 0<A<2m,

(3.1)

where A denotes a real constant, g(f) is a given 2z-periodic
function, and A4 denotes Laplace’s operator in polar
coordinates,

PP WA Wi
ot rér

=3 (32)
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Equations (3.1) and the assumption that d%u/dr?, 3%u/06?
and &*u/6r* 80* are continuous in the unit disk imply that

é%u

82
LR Fe0+ Tino)]

62 63
[682 0, 9)+rag28 0, 8)
r2 64
+L 9)]

+ Au(r, @)= f{r, 6} (3.3}

for any re (0, 1) and 8 € [0, 2x), where 0 <, £ <r, Taking
the limit as r — 0 in {3.3) we obtain

1Y\ 2%u
0 (TZ) 5 0.0=0, (34)
o (N2 0, 0)+ 2% (0, 8)=0, 3.5
(7):5 0.0+ 50,0 (35)
Fu 1
o(1): — [az(o 0) + ZF’;Z(O,@)]
+ Au(0, 8) = £(0, ). (3.6)

By means of Fourier analysis we can show that (3.4) has
one “component defect.” In fact, substituting the Fourier
expansion of u(r, ),

o

u(r, )= 3% uX(r)e™, (3.7}
into (3.4) we have
—n?uX(0)=0, n=0,+1, ... (3.8)

This condition gives no information concerning the compo-
nent with n = 0. The defect in the zeroth component of (3.4)

should be redressed using the corresponding component
from (3.5). This yields

du*

(1—n)——»-(0)= with n=0,

or
dul

—>©=o.

(3.9)

Making use of (3.7) we see that (3.9) may be written as

2n au

5 0.4 ™dp=0  with n=0,
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and if this is combined with (3.8) we obtain

&u

(0 ¢) dip=0. (3.10)

0 9)+j

The pole condition (3.10) will be used as a boundary condi-
tion at r = 0 in the pseudospectral approximation. It should
be noted that (3.10) is equivalent to conditions (3.4.6) and
(3.4.8) on page 90 of [3], but (3.10) is a more convenient
formulation for use in the pseudospectral approximation.

4. PSEUDOSPECTRAL METHOD FOR POISSON-
TYPE EQUATIONS ON THE UNIT DISK

The pseudospectral approximation to (3.1) using (3.10)
as the boundary condition at r=0 is described in Subsec-
tion 4.1. Numerical results are given in Subsection 4.2 and
they are compared with those obtained by Eisen et al. {41.
Subsection 4.3 discusses the effect of finite-difference pre-
conditioning. In [4], Fisen et al. considered a collocation
approach, with basis functions especially chosen to permit
the location-of the coordinate singularity to be used as a
collocation point. Basis functions were selected to maintain
solution smoothness.

4.1. Pseudospectral Method

Let
1 —cos(kn/N,
rk=ﬂ§—i—), k=0,., N, (a.1)
nf ,
sz'iﬂ’ i=0,.,2N,—1, (42)

where N, and N, are certain positive integers. Then the
corresponding cardinal functions in r- and #-directions,
respectively, are [2]

h =TI 2= k=0, N (43)
k(r)_l—l — =0,., N, .
icote— 11
1k

and

(6)=L51n[N9(9 8,)] cot[0.5(6 —6,)]

/ 2N,
N
= L i _ie’."(g_a.l),
2Ng, TN Cn

=0, . 2N, — 1, (4.4)
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where

H= iNﬂ

_ {2
= {1, In| # N (43)
If we approximate u(r, 0) by
Ny 2Np—1
®)=3 3 uyhdr) Ci(0), (4.6)

k=0 j=0

then the collocation équations of (3.1) and (3.10) are

e 1 du 1 3%
l:az (r), 0, )+ ,8 (rs, 8 )+r—%W(rn9m):|
+ /111 r!! f(rh 9 } (47}
u(l,0,)=g(d,) (4.8)
2n au
S 0.0,)+[ 2 0.9 dp=0,
i=1,.,N—1, m=0,.,2N,— 1. (4.9)
Equation (4.8) may be written simply as
uN,m=g(8m)’ m=0’ ey ZNE)_ 1 (4'10)
and (4.9) may be rewritten as
62uc Ny 2Ng—1 dh
0.9,,) + YL my—(0)
692 k=0 j=0 kj d
=0, m=0,...,2N9—1,
or
azuc 62
W (0’ Gm) 692 (0, 8m+1)
=0, m=0, ., 2N,—2,
8¢ N, 2Np—1 (4.11)
7 (0, 92Ng—l)+ Y Y oy
69 k=0 j=0
dh,
x 71'—?’_ (0) =0
Hence u,;, k=0,1,.., N,,j=0, .., 2N, — 1 may be obtained
by solving (4.7), 4 10), and (4.11). The matrix—vector

multiplications in (4 7), (4.10), and (4.11) can be performed
by fast transform or differentiation matrix methods and the
reader may refer to [6].
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TABLE 1

Pseudospectral Methods for (3.1) with the Exact
Solution e+ and 1 =0

Em
N Present [4]°
2 2TISE-2 9.589E — 2
3 7.789E -3 9310E—2
4 5.105E —4 2.185E-2
5 5.819E —3 2365E-3
6 3956E —6 6.037E—-5
7 3486E —7 27TIE -5
8 2611E—8 32T2E—6
9 1.609E — 9 1902E -7
10 8.573E 11 2.040E -9
11 " 4838E-12 8.545E — 10
12 2421E—13 6.817E—11
16 1.601E — 14 4.767E — 12

“ These values are quoted from Table IT in [4].

4.2, Numerical Fxperiments

In order to compare the present results with those
obtained by Fisen et al. [4], hereafter we shall take

N,=Ny=N. (4.12)
The algebraic system formed by {4.7), (4.10), and (4.11) for
Uy, k=0,., N, j=0,..,2N—1, is solved by the standard
routine FO4ATF (Crout’s factorisation method) from the
NAG library on a VAX 8650 computer in double precision.

Tables I-III list present results and the best results
obtained by Fisen er al. {4] for all examples considered
there. In these tables we denote

|u(re, 8)) — u(ry, 0)1,

TABLE II

Pseudospectral Methods for (3.1) with the Exact
Solution cos(3r cos 8+ 4rsin # 4+ 0.7)

E,
A Present N=§ Present N =10 4] N=8
—(2.4048)? 4.786E — 2 3.089E — 4 2551E+2
0 1L.115E-3 4.909E — 5 245TE-3
1 1.106E—3 4.887E-5 2.143E-13
5 1073E—3 4802E-—5 4497E -3
10 1.034E -3 4700E -5 8.368E —3
30 9.029E — 4 4335E—35 2.139E-2
100 6.284E —4 3427E-5 5.294E -2
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where u(r, 8) is the exact solution of (3,1). From these
results we observe the exponential convergence of the
method described in Subsection 4.1 for small N and
infinitely differentiable (in polar coordinates) exact solu-
tion. It can be seen that the method described here is more
accurate than that in [4]. Furthermore, the pole condition
used here is represented entirely in physical space, unlike
that in [4], so it is simpler to implement. Table III also
shows that the present method may give good results for
exact solutions which are not infinitely differentiable.

4.3. Finite-Difference Preconditioning

Using (3.10) we can also construct an effective finite-dif-
ference preconditioner for the pseudospectral differentiation
matrix. The resulting preconditioned matrix has a low
condition number which is independent of N, and the
associated linear system could be solved conveniently by
iterative methods. Furthermore, the preconditioning matrix
1s sparse, and the linear system could therefore be solved
inexpensively. To construct the preconditioner we consider
a finite difference approximation to (3.1) and (3.10). The
discretisation of (3.1) is

-2 |:(uk+l.j_uk,j}_(uk-ju’f—l,J):I

Fep1—Ti—a (rev1—re) (re—ri—1)

l (“k+1,j—”k—1,j)
_rk. (Pes1— 1)

2
_"i(g'ﬂ_e'fl)

J F)

x [(“k,j+1 — “k,j)_ (”k,j_ uk.jl):l

(8j+1_9j) (Gj_gj—l)
+ﬂ.uk‘j=f;(,j (4.133)
TABLE III
Pseudospectral Methods for (3.1) with 2=0
E.(N=8)
u{r, 8) Present [4]°
greost +esind 2611E—8 2856E—8
cos(7r cos 6+ 8rsin 04 0.7) 0.411 1.474
(N=16, 1L.365E—4) (N =16,4873E-4)
r 3553E—14 2922E -2
r 3303E-14 —
rs 3000E-14 1.225E -3
rs 2274E -5 767TE -2
s 5261E—6 —
ris 52715E—-17 —

“These values, quoted from Table V in [4], were obtained by the
even-parily method.

4 These values, quoted from Table VI in [4], were obtained by the
even-parity method.
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TABLE IV

Eigenvalues of Minimum and Maximum Modulus for the
Preconditioned Pseudospectral Differentiation Matrix Ap] Apg
with N, = N,

Nr 2Nﬂ M’lmin Mlqmu
2 4 1.000 n/4
3 6 0.955 n2/4
4 8 0.968 n/4
5 10 0.964 n/d4
6 12 0.966 n*/4
7 14 0.964 n/4
8 16 0.964 n/4
9 18 0.963 n34

10 20 0.963 n%/a

11 22 0.962 /4

12 24 0.962 n%/4

@ The computed values of [, for all ¥, and 2N, listed agree with ©%/4
to at least 14 decimal places.

uy ;=g(0), k=1.,N -1,
J=0,..,2N;—1, (4.13b)

with the periédic condition
Up 2wy = Ui.0s k=0,.,N,, “.14)

9,1 = 90 - (921\;,; - BZM)— 1)'

Equation (3.10) can be discretised as

Ho jy1 “uo,j)u (u(),j_u().j—l)]

2 [(
(1 —8_0L (6,,.—6)

(6;,—8;,_1)
+2M’*1 (0:,—8)
i=0 2
(1), —ug,) (1, i+1_u0r'+1}j|
x - & > i =0’
I: (r1—rg) (ri—rop)

j=0,.,2N,—1,

Real

1
2.30

0.00 y - - =

Ll T
1.00 1.25 1.50 1.75 2.00 2.2%

° N,=Ng=8

-0.03 -
Imaginary

FIG. 4.1. Eigenvalues of the preconditioned pseudospectral differen-
tiation matrix (Agp) ™! Apg with ¥, =N,=8.
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or

2 ]:(uo,j-q.l_uo,j)_(uo.j_uo.j—l}:l

(9j+1—8j—1) (9j+1_8j) {Bj'“ejfl)
__z
(9j+2 - Bj)

[(uo,prz*uo.j“)_{uu.j“ _u(].j):|=0
(9j+2_9j+1) (Gj+l_9j) ’

=0, ., 2N, -2,
(4.15)

2 I:(uo, anvg — Ho 2wy — 1)
(62N9_92N9—2} (92N9_92N9—1)

(HO,ZNH— 1~ Mo any— 2}:|

(92N9— 1 923\@-2)

28— 1
: (Bi+1—9i)
+ .
z T
(1~ tgs) (01— Uy i+l):|
x » &l + 1 s =0-
[ (ri—ro) (ri—ro)

Incorporating (4.14), we see that (4.13) and (4.15) form a
sparse algebraic system which can be solved efficiently by
any sparse solver.

Denote the difference matrix arising from (4.13) and
(4.15) by Agp and the differentiation matrix arising from
(4.7}, (4.10), and (4.11) by Apg. Table IV shows the eigen-
values of minimum and maximum modulus for the matrix
ArsAps Wwhen N, = Ny=N. Figure 4.1 displays all of the
eigenvalues of Ap3Aps for N, = N,=28. It is seen that the
ratio ||, /|4 min 18 low and virtually independent of N.
The matrix Ay is therefore an effective preconditioner for
the pseudospectral differentiation matrix Apg.

5. CONCLUSIONS AND COMMENTS

By using the eigenvalue problem of Bessel’s equation and
Poisson-type equations on the unit disk, we have presented
a simple method to construct a proper pole condition from
the assumption of smoothness of the solution and from the
differential equation itsell. Numerical experiments show
that by imposing the proper pole condition as the boundary
condition at the coordinate singularity the standard
pseudospectral method can capture fully the special
behaviour of the solution near the singularity and it can
obtain very high accuracy. Since the pole condition is simple
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and represented in the physical space and since the standard
pseudospectral method is applied, fast transformation
methods can be used. Consequently, the complexity of
solving singular problems with smooth solutions by
pseudospectral methods is no greater than that involved in
solving non-singular problems with smooth solutions.

Although we have considered only two kinds of singular
problems in this paper, we believe that the method
presented is straightforward and that it could also be
applied to other singular probiems such as Poisson-type
equations in ¢ylindrical or spherical geometries. We
propose to examine extensions of this type.
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